Thermodynamics of liquid mixtures of acids: phase equilibria and excess molar enthalpies of acetic acid mixtures with active non-associating components

Isamu Nagata * and Kaoru Miyamoto

Department of Chemistry and Chemical Engineering, Division of Physical Sciences, Kanazawa University, Kodatsuno 2-40-20, Kanazawa 920 (Japan)

(Received 11 March 1993; accepted 5 April 1993)

Abstract

Vapour-liquid equilibria and excess molar enthalpies of binary solutions of acetic acid with water, 2-butanone, methyl acetate and ethyl acetate are calculated using the UNIQUAC associated-solution model, which takes into account the autodimerization of acetic acid and the heteroassociation of unlike molecules. Prediction of ternary liquid-liquid equilibria for the acetic acid + water + nonassociating component systems are demonstrated from the same model with only binary parameters. The calculated results agree well with the experimental values.

LIST OF SYMBOLS

A, A_1, A_2	acid, acid monomer and acid dimer
$a_{\rm JI}$	binary interaction parameter for J-I pair
AB	1:1 chemical complex involving acid and active component
B, B_1	nonassociating component and nonassociating component
	monomer
$\mathbf{B}_{\mathbf{II}}^{\mathbf{F}}$	free contribution to second virial coefficient of component I
C_{JI}, D_{JI}	coefficients of eqn. (14)
F	objective function as defined by eqn. (22)
H^{E}	excess molar enthalpy
h _A	enthalpy of hydrogen bond formation for acid dimer
$h_{\rm AB}$	enthalpy of complex formation between components A and
	В
K _A	equilibrium constant of acid dimer formation
K _{AB}	solvation constant between components A and B
N	number of experimental data points
Р	total pressure

^{*} Corresponding author.

$P_{\mathrm{I}}^{\mathrm{s}}$	saturated vapour pressure of pure component I
q_{I}	molecular geometric area parameter of pure component I
R	universal gas constant
r _I	molecular geometric volume parameter of pure component
	Ι
Т	absolute temperature
V	true molar volume of acid mixture given by eqn. (10)
V_A°	true molar volumes of pure acid given by eqns. (11)
v_I^L	pure liquid molar volume of component I
x _I	liquid-phase mole fraction of component I
y_{I}	vapour-phase mole fraction of component I
y_{I_1}	vapour-phase mole fraction of monomeric component I
Ζ	lattice coordinate number, here set as 10

Greek letters

γι	activity coefficient of component I
θ_{I}	surface fraction of component I
$\sigma_{\rm P}, \sigma_{\rm T}, \sigma_x, \sigma_y$	standard deviations in pressure, temperature, liquid and
	vapour compositions, respectively
$ au_{ m JI}$	coefficient as defined by $\exp(-a_{\rm H}/T)$
Φ_{I}	segment fraction of component I
Φ_{I_1}	monomer segment fraction of component I
$\Phi^{\rm o}_{\rm I_1}$	monomer segment fraction of pure acid given by eqn. (12)
$\phi_{\scriptscriptstyle \mathrm{I}}$	fugacity coefficient of component I at P and T
$oldsymbol{\phi}_{ extsf{I}}^{ extsf{s}}$	fugacity coefficient of pure component I at P_{I}^{s} and T

Subscripts

Α	acid
A_1, A_2	acid monomer and acid dimer
AB	binary 1:1 complex between components A and B
В	non-associating component
chem	chemical
I, J, K	components I, J and K
phys	physical

Superscripts

0	pure liquid	reference	state
*	50°C		

INTRODUCTION

The UNIQUAC associated-solution model has been successfully applied to describe vapour-liquid equilibria and excess molar enthalpies of alkanoic acid + hydrocarbon mixtures, under the assumption that the acid self-associates to form dimers in the vapour and liquid phases [1, 2]. The same

model has been extended to represent vapour-liquid equilibrium and excess molar enthalpy data for acid + alcohol mixtures [3].

In this paper, based on the UNIQUAC associated-solution model, we study the vapour-liquid equilibria and excess molar enthalpies of binary mixtures of acetic acid + water, +2-butanone, +methyl acetate and +ethyl acetate and the prediction of ternary liquid-liquid equilibria of acetic acid solutions including water and a non-associated component from binary parameters alone.

SOLUTION MODEL

We assume that in the liquid phase acetic acid (A) forms cyclic dimers by autoassociation, and acetic acid and an active non-associating component (B) solvate to yield 1:1 chemical complexes. the equilibrium constants for self-association and solvation, K_A and K_{AB} , are defined by

$$K_{A} = \frac{\Phi_{A_{2}}}{\Phi_{A_{1}}^{2}} \qquad \text{for } A_{1} + A_{1} = A_{2}$$
$$= K_{A}^{*} \exp\left[-\frac{h_{A}}{R}\left(\frac{1}{T} - \frac{1}{T^{*}}\right)\right] \qquad (1)$$

$$K_{AB} = \frac{\Phi_{AB}}{\Phi_{A_1}\Phi_{B_1}} \frac{1}{r_A + r_B} \qquad \text{for } A_1 + B_1 = AB$$
$$= K_{AB}^* \exp\left[-\frac{h_{AB}}{R}\left(\frac{1}{T} - \frac{1}{T^*}\right)\right] \qquad (2)$$

where Φ is the segment fraction, h_A the enthalpy of hydrogen bond for dimer formation, h_{AB} the enthalpy of complex formation and superscript * denotes a reference temperature, here equal to 50°C.

Binary systems

Activity coefficient

The UNIQUAC associated-solution model provides the following expressions of the activity coefficients for acetic acid (A) and the active non-associated component (B)

$$\ln \gamma_{A} = \ln\left(\frac{\Phi_{A_{1}}}{\Phi_{A_{1}}^{\circ}}\right) + r_{A}\left(\frac{1}{V_{A}^{\circ}} - \frac{1}{V}\right) - \left(\frac{Z}{2}\right)q_{A}\left[\ln\left(\frac{\Phi_{A}}{\theta_{A}}\right) + 1 - \frac{\Phi_{A}}{\theta_{A}}\right] + q_{A}\left[1 - \ln\left(\sum_{J} \theta_{J}\tau_{JA}\right) - \sum_{J}\frac{\theta_{J}\tau_{AJ}}{\sum_{K} \theta_{K}\tau_{KJ}}\right]$$
(3)
$$\ln \gamma_{B} = \ln\left(\frac{\Phi_{B}}{x_{B}}\right) + 1 - \frac{r_{B}}{V} - \left(\frac{Z}{2}\right)q_{B}\left[\ln\left(\frac{\Phi_{B}}{\theta_{B}}\right) + 1 - \frac{\Phi_{B}}{\theta_{B}}\right] + q_{B}\left[1 - \ln\left(\sum_{J} \theta_{J}\tau_{JB}\right) - \sum_{J}\frac{\theta_{J}\tau_{BJ}}{\sum_{K} \theta_{K}\theta_{KJ}}\right]$$
(4)

where Z is the lattice coordination number, here set as 10, and the segment fraction Φ_{I} , the surface fraction θ_{I} , the binary coefficient τ_{JI} related to the binary interaction parameter a_{JI} are expressed by

$$\Phi_{\rm I} = r_{\rm I} x_{\rm I} \bigg/ \sum_{\rm J} r_{\rm J} x_{\rm J} \tag{5}$$

$$\boldsymbol{\theta}_{\mathrm{I}} = \boldsymbol{q}_{\mathrm{I}} \boldsymbol{x}_{\mathrm{I}} / \sum_{\mathrm{J}} \boldsymbol{q}_{\mathrm{J}} \boldsymbol{x}_{\mathrm{J}} \tag{6}$$

$$\tau_{\rm JI} = \exp(-a_{\rm JI}/T) \tag{7}$$

The monomer segment fractions of both components are simultaneously solved from eqns. (8) and (9).

$$\Phi_{A} = \Phi_{A_{1}} + \Phi_{A_{2}} + \Phi_{AB}r_{A}/r_{AB}$$

= $\Phi_{A_{1}} + 2K_{A}\Phi_{A_{1}}^{2} + K_{AB}\Phi_{A_{1}}\Phi_{B_{1}}r_{A}$ (8)

$$\Phi_{\mathbf{B}} = \Phi_{\mathbf{B}_{1}} + \Phi_{\mathbf{A}\mathbf{B}} r_{\mathbf{B}} / r_{\mathbf{A}\mathbf{B}}$$
$$= \Phi_{\mathbf{B}_{1}} + K_{\mathbf{A}\mathbf{B}} \Phi_{\mathbf{A}_{1}} \Phi_{\mathbf{B}_{1}} r_{\mathbf{B}}$$
(9)

where $r_{AB} = r_A + r_B$ is assumed.

The true molar volume of the mixture is given by

$$\frac{1}{V} = \frac{\Phi_{A_1}}{r_A} (1 + K_A \Phi_{A_1}) + \frac{\Phi_{B_1}}{r_B} + K_{AB} \Phi_{A_1} \Phi_{B_1}$$
(10)

At pure acid state V_A° and $\Phi_{A_1}^{\circ}$ are given by eqns. (11) and (12)

$$\frac{1}{1} = \frac{1 - K_{\rm A} \Phi_{\rm A_1}^{o2}}{1} \tag{11}$$

$$V_{\rm A}^{\rm o}$$
 $r_{\rm A}$ (12)

$$\Phi_{A_1}^{\circ} = \left[-1 + (1 + 8K_A)^{0.5}\right] / 4K_A \tag{12}$$

Excess molar enthalpy

The excess molar enthalpy of the acid mixture is expressed as the sum of the chemical and physical contributions.

$$H^{\rm E} = H^{\rm E}_{\rm chem} + H^{\rm E}_{\rm phys}$$

= $h_{\rm A} x_{\rm A} K_{\rm A} \left(\frac{\Phi^2_{\rm A_1}}{\Phi_{\rm A}} - \Phi^{\rm o2}_{\rm A_1} \right) + \frac{h_{\rm AB} K_{\rm AB} \Phi_{\rm A_1} \Phi_{\rm B_1} r_{\rm A} x_{\rm A}}{\Phi_{\rm A}}$
 $- R \sum_{\rm I} q_{\rm I} x_{\rm I} \frac{\sum_{\rm J} \theta_{\rm J} \frac{\partial \tau_{\rm JI}}{\partial (1/T)}}{\sum_{\rm I} \theta_{\rm J} \tau_{\rm JI}}$ (13)

The binary energy parameters are assumed to be linearly temperature

dependent.

$$a_{\rm JI} = C_{\rm JI} + D_{\rm JI}(T - 273.15) \tag{14}$$

Ternary systems

In a ternary mixture containing acid (A) and two active non-associating components (B and C), we assume additional complex formation between acid and component C.

$$K_{AC} = \frac{\Phi_{AC}}{\Phi_{A_1}\Phi_{C_1}} \frac{1}{r_A + r_C} \qquad \text{for } A_1 + C_1 = AC$$
$$= K_{AC}^* \exp\left[-\frac{h_{AC}}{R}\left(\frac{1}{T} - \frac{1}{T^*}\right)\right] \qquad (15)$$

The monomer segment fractions, Φ_{A_1} , Φ_{B_1} and Φ_{C_1} , are given by simultaneous solution of the following mass balance equations:

$$\Phi_{\rm A} = \Phi_{\rm A_1} + 2K_{\rm A}\Phi_{\rm A_1}^2 + K_{\rm AB}\Phi_{\rm A_1}\Phi_{\rm B1}r_{\rm A} + K_{\rm AC}\Phi_{\rm A_1}\Phi_{\rm C_1}r_{\rm A}$$
(16)

$$\Phi_{\mathbf{B}} = \Phi_{\mathbf{B}_{1}} + K_{\mathbf{A}\mathbf{B}}\Phi_{\mathbf{A}_{1}}\Phi_{\mathbf{B}_{1}}r_{\mathbf{B}}$$
(17)

$$\Phi_{\rm C} = \Phi_{\rm C_1} + K_{\rm AC} \Phi_{\rm A_1} \Phi_{\rm C_1} r_{\rm C} \tag{18}$$

The true molar volume V of the ternary mixture is expressed by

$$\frac{1}{V} = \frac{\Phi_{A_1}}{r_A} (1 + K_A \Phi_{A_1}) + \frac{\Phi_{B_1}}{r_B} + K_{AB} \Phi_{A_1} \Phi_{B_1} + \frac{\Phi_{C_1}}{r_C} + K_{AC} \Phi_{A_1} \Phi_{C_1}$$
(19)

The activity coefficient of component C is obtained by changing the subscript B in eqn. (4) to the subscript C.

CALCULATED RESULTS

Table 1 shows the molecular structural parameters of pure components, r and q, which were estimated according to the method of Vera et al. [4].

Vapour-liquid equilibrium data were reduced using the thermodynamic

TABLE 1

Molecular structural	parameters	for pure	e components
----------------------	------------	----------	--------------

Component	r	q	Component	r	q
Acetic acid	1.78	1.62	Methyl acetate	2.25	2.00
Benzene	2.56	2.05	Toluene	3.10	2.48
2-Butanone	2.60	2.28	Tetrachloromethane	2.71	2.37
Cyclohexane	3.18	2.55	Water	0.73	1.19
Ethyl acetate	2.79	2.43			

.4			

System (A + B)	К _{АВ} at 323.15 К	$-h_{AB}/kJ mol^{-1}$
Acetic acid + water	60	23.4
Acetic acid + 2-butanone	40	22.0
Acetic acid + ethyl acetate	40	20.5
Acetic acid + methyl acetate	40	20.5

TABLE 2

Soluction	norometers	for	hinany	mixturas
Solvation	parameters	TOL	omary	mixtures

relation

$$P\phi_{I}y_{I} = \gamma_{I}x_{I}\phi_{I}^{s}P_{I}^{s}\left[\frac{\upsilon_{I}^{L}(P-P_{I}^{s})}{RT}\right]$$
(20)

where P is the total pressure, ϕ_I the fugacity coefficient of component I, y_I the vapour-phase mole fraction of component I, P_I^s the pure component vapour pressure taken from the original vapour-liquid equilibrium data set, v_I^L the pure-liquid molar volume estimated from the modified Rackett equation [5]. The fugacity coefficient ϕ_I is calculated from the chemical theory of vapour imperfections [6].

$$\phi_{\rm I} = \frac{y_{\rm I_{\rm I}}}{y_{\rm I}} \exp\left(\frac{PB_{\rm II}^{\rm F}}{RT}\right) \tag{21}$$

where y_{I_1} is the vapour-phase monomer mole fraction of component I and B_{II}^{F} the free contribution to the second virial coefficient [7]. The association parameters of acetic acid were taken from Tamura and Nagata [1]: $K_A = 14651.2$ at 50°C and $-h_A = 44.5$ kJ mol⁻¹. The solvation parameters are shown in Table 2.

The computer program described by Prausnitz et al. [8] was used to seek an optimum set of the energy parameters by minimizing the object function.

$$F = \sum_{i=1}^{N} \left[\frac{(P_i - \hat{P}_i)^2}{\sigma_P^2} + \frac{(T_i - \hat{T}_i)^2}{\sigma_T^2} + \frac{(x_{1_i} - \hat{x}_{1_i})^2}{\sigma_x^2} + \frac{(y_{1_i} - \hat{y}_{1_i})^2}{\sigma_y^2} \right]$$
(22)

where a circumflex denotes the most probable calculated value corresponding to each measured variable and the standard deviations of the measured values are: for pressure, $\sigma_P = 1$ Torr; for temperature, $\sigma_T = 0.05$ K; for liquid-phase mole fraction, $\sigma_x = 0.001$; for vapour-phase mole fraction, $\sigma_y = 0.003$. Table 3 indicates the results of vapour-liquid equilibrium calculations and Figs. 1-4 compare the calculated results with the experimental values for some typical examples.

Table 4 lists the binary results of excess molar enthalpies. The coefficients, C_{JI} and D_{JI} , were obtained by minimizing the sum of the squares of the deviations between the experimental and calculated values.

Calculated results of binary va	ıpour-liquid e	squilibrium	data						
System (A + B)	Temp./°C	No. of data	Root-mean	ı square dev	iations		Parameters	/К	Reference
		points	δ <i>p</i> /Torr	<i><i>§</i>T/K</i>	$\delta x \times 10^3$	$\delta y imes 10^3$	a _{AB}	<i>a</i> _{BA}	
Acetic acid + water	20	10	0.13	0.00	0.2	2.2	515.81	-244.68	6
	25	8	0.60	0.05	2.2	17.1	-29.06	72.47	6
	25	11	0.36	0.00	1.1	15.0	81.05	-62.13	10
	40	11	0.35	0.00	0.4	3.3	534.39	-262.06	6
	60	10	1.59	0.03	0.7	5.5	603.90	-300.70	11
	69.7	11	2.35	0.00	1.2	9.3	572.49	-294.46	11
	70	12	1.74	0.00	2.5	12.5	518.58	-282.59	10
	79.9	11	1.84	0.00	1.0	6.6	559.72	-300.32	11
	80	10	1.32	0.00	0.6	5.5	585.80	-307.80	6
	80.09	7	1.57	0.00	0.9	8.0	550.78	-291.86	6
	89.9	11	2.26	0.00	1.1	9.4	540.29	-300.79	11
Acetic acid + 2-butanone	68.51	8 ^a	2.25	0.00	1.2	6.5	-301.63	664.25	12
	78	6	5.47	0.01	2.7	5.2	-307.84	621.32	12
Acetic acid + ethyl acetate	65.01	11	1.20	0.04	1.7	13.7	-245.14	451.27	13
	≈65.18								
	72.94	11	1.77	0.07	3.1	22.2	-262.46	507.45	13
	≈73.08								
Water + benzene	25	MS ^b					546.62	1075.3	14
Water + 2-butanone	25	MS					21.44	379.69	14
Water + cyclohexane	25	MS					767.01	1490.5	14
Water + tetrachloromethane	25	MS					690.90	1453.4	14
Water + tolune	25	MS					539.46	1166.3	14
Water + ethyl acetate	30	MS					130.90	423.95	14

TABLE 3

^a One erroneous point rejected. ^b Mutual solubilities.

.

Fig. 1. Vapour-liquid equilibria for the acetic acid + water system. Calculated: —. Experimental: ■, 20°C [9]; ▲, 40°C [9]; ●, 60°C [11].

Fig. 2. Vapour-liquid equilibria for the acetic acid + water system. Calculated: —. Experimental: ■, 69.7°C [11]; ▲, 80°C [9]; ●, 89.9°C [11].

Fig. 3. Vapour-liquid equilibria for the acetic acid + 2-butanone system. Calculated: —. Experimental: ▲, 68.51°C [12]; ●, 78°C [12].

Fig. 4. Vapour-liquid equilibria for the acetic acid + ethyl acetate system. Calculated: —. Experimental: ▲, 65.01-65.18°C [13]; ●, 72.94-73.08°C [13].

System (A + B)	Temp./°C	No. of data	Parameters				Abs.	Reference
		points	$C_{\rm BA}/{ m K}$	D_{BA}	C_{AB}/K	D_{AB}	arun mean dev.	
Acetic acid + water	20	11	530.18	2.4578	253.33	-0.0934	2.83	15
Acetic acid + water	40	10	838.07	3.3492	327.43	0.1085	0.00	15
Acetic acid + 2-butanone	20	19	259.02	1.0128	457.27	1.7561	1.61	16
Acetic acid + ethyl acetate	19–26	6	352.40	1.6383	339.67	1.4212	1.48	15
Acetic acid + methyl acetate	35	13	124.53	0.6595	449.07	1.7307	3.07	15
			-					

Calculated results of binary excess enthalpy data

TABLE 4

Fig. 5. Excess molar enthalpies for the acetic acid + water system. Calculated: —. Experimental: ▲, 20°C [15]; ●, 40°C [15].

Fig. 6. Excess molar enthalpies for three acetic acid + organic compound systems. Calculated: —. Experimental: \bullet , acetic acid + 2-butanone at 20°C [16]; \blacktriangle acetic acid + ethyl acetate at 19-26°C [15]; \blacksquare , acetic acid + methyl acetate at 35°C [15].

Fig. 7. Ternary liquid-liquid equilibria for the acetic acid + water + cyclohexane system at 25°C. Calculated: —. Experimental tie line [18]: \bullet --- \bullet .

Fig. 8. Ternary liquid-liquid equilibria for the acetic acid + water + benzene system at 25°C. Calculated: —. Experimental tie line [18]: \bigcirc - - \bigcirc .

Fig. 9. Ternary liquid-liquid equilibria for the acetic acid + water + toluene system at 25°C. Calculated: —. Experimental tie line [18]: \bullet - - \bullet .

Fig. 10. Ternary liquid-liquid equilibria for the acetic acid + water + tetrachloromethane system at 25°C. Calculated: —. Experimental tie line [18]: \bullet - - \bullet .

Fig. 11. Ternary liquid-liquid equilibria of the acetic acid + water + 2-butanone system at 25°C. Calculated: —. Experimental tie line [18]: \bigcirc - - \bigcirc .

Fig. 12. Ternary liquid-liquid equilibria for the acetic acid + water + ethyl acetate at 30° C. Calculated: —. Experimental tie line [18]: $\bullet - - \bullet$.

The simplex method of Nelder and Mead [17] was used for this purpose. Figures 5 and 6 present the calculated and observed values of solutions of acetic acid with 2-butanone, ethyl acetate, methyl acetate and water.

Ternary prediction of liquid-liquid equilibrium was performed for six systems: acetic acid + water + cyclohexane, acetic acid + water + benzene, acetic acid + water + toluene, acetic acid + water + tetrachloromethane, acetic acid + water + 2-butanone and acetic acid + water + ethyl acetate. Figures 7-12 show that agreement is good.

We may conclude that the UNIQUAC associated-solution model is good in the correlation of vapour-liquid equilibrium and excess molar enthalpy data of binary acetic acid + active non-associating mixtures and could be used for the prediction of ternary liquid-liquid equilibrium data of solutions including acetic acid, water and one non-associated component.

REFERENCES

- 1 K. Tamura and I. Nagata, Fluid Phase Equilibria, 64 (1991) 49-61.
- 2 I. Nagata and K. Tamura, Fluid Phase Equilibria, 64 (1991) 61-72.
- 3 I. Nagata and H. Hori, Thermochim. Acta, in press.
- 4 J.H. Vera, S.G. Sayegh and G.A. Ratcliff, Fluid Phase Equilibria, 1 (1991) 113-135.
- 5 C.F. Spencer and R.P. Danner, J. Chem. Eng. Data, 17 (1972) 236-241.
- 6 K.H. Nothnagel, D.S. Abrams and J.M. Prausnitz, Ind. Eng. Chem., Process Des. Dev., 1 (1973) 25–35.
- 7 J.G. Hayden and J.P. O'Connell, Ind. Eng. Chem., Process Des. Dev., 14 (1975) 209-216.
- 8 J.M. Prausnitz, T.F. Anderson, E.A. Grens, C.A. Eckert, R. Hsieh and J.P. O'Connell, Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria, Prentice Hall, Englewood Cliffs, NJ, 1980.
- 9 J. Gmehling and U. Onken, Vapor-Liquid Equilibrium Data Collection, Aqueous-Organic Systems, Chemistry Data Series, Vol. I, Part 1, Dechema, Frankfurt am Main, Germany, 1977.
- 10 J. Gmehling, U. Onken and J.R. Rarey-Nies, Vapor-Liquid Equilibrium Data Collection, Aqueous Systems (Suppl. 2), Chemistry Data Series, Vol. I, Part 1b, Dechema, Frankfurt am Main, Germany, 1988.
- 11 J. Gmehling, U. Onken and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Aqueous-Organic Systems (Suppl. 1), Chemistry Data Series, Vol. I, Part 1a, Dechema, Frankfurt am Main, Germany, 1981.
- 12 J. Gmehling, U. Onken and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Aldehydes and Ketones, Ethers, Chemistry Data Series, Vol. I, Parts 3 + 4, Dechema, Frankfurt am Main, Germany, 1979.
- 13 E.A. Macedo and P. Rasmussen, J. Chem. Eng. Data, 27 (1982) 463-465.
- 14 J.M. Sørensen and W. Arlt, Liquid-Liquid Equilibrium Data Collection, Binary Systems, Chemistry Data Series, Vol. V, Part 1, Dechema, Frankfurt am Main, Germany, 1979.
- 15 J.J. Christensen, R.W. Hanks and R.M. Izatt, Handbook of Heats of Mixing, Wiley, New York, 1982.
- 16. J. Gmehling and T. Holderbaum, Heats of Mixing Data Collection, Binary and Multicomponent Systems (Suppl. 1), Chemistry Data Series, Vol. III, Part 3, Dechema, Frankfurt am Main, Germany, 1989.

- 17 J.A. Nelder and R. Mead, Comput. J., 7 (1965) 303-313.
- 18 J.M. Sørensen and W. Arlt, Liquid-Liquid Equilibrium Data Collection, Ternary Systems, Chemistry Data Series, Vol. V, Part 2, Dechema, Frankfurt am Main, Germany, 1980.