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Abstract 

Vapour-liquid equilibria and excess molar enthalpies of binary solutions of acetic acid 
with water, 2-butanone, methyl acetate and ethyl acetate are calculated using the UNIQUAC 
associated-solution model, which takes into account the autodimerization of acetic acid 
and the heteroassociation of unlike molecules. Prediction of ternary liquid-liquid equi- 
libria for the acetic acid + water + nonassociating component systems are demonstrated 
from the same model with only binary parameters. The calculated results agree well with 
the experimental values. 
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saturated vapour pressure of pure component I 
molecular geometric area parameter of pure component I 
universal gas constant 
molecular geometric volume parameter of pure component 
I 
absolute temperature 
true molar volume of acid mixture given by eqn. (10) 
true molar volumes of pure acid given by eqns. (11) 
pure liquid molar volume of component I 
liquid-phase mole fraction of component I 
vapour-phase mole fraction of component I 
vapour-phase mole fraction of monomeric component I 
lattice coordinate number, here set as 10 

activity coefficient of component I 
surface fraction of component I 
standard deviations in pressure, temperature, liquid and 
vapour compositions, respectively 
coefficient as defined by exp( -a,,/T) 
segment fraction of component I 
monomer segment fraction of component I 
monomer segment fraction of pure acid given by eqn. (12) 
fugacity coefficient of component I at P and T 
fugacity coefficient of pure component I at Pi and T 

acid 
acid monomer and acid dimer 
binary 1: 1 complex between components A and B 
non-associating component 
chemical 
components I, J and K 
physical 

pure liquid reference state 
50°C 

INTRODUCTION 

The UNIQUAC associated-solution model has been successfully applied to 
describe vapour-liquid equilibria and excess molar enthalpies of alkanoic 
acid + hydrocarbon mixtures, under the assumption that the acid self- 
associates to form dimers in the vapour and liquid phases [l, 21. The same 
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model has been extended to represent vapour-liquid equilibrium and 
excess molar enthalpy data for acid + alcohol mixtures [3]. 

In this paper, based on the UNIQUAC associated-solution model, we study 
the vapour-liquid equilibria and excess molar enthalpies of binary mixtures 
of acetic acid + water, +2-butanone, +methyl acetate and +ethyl acetate 
and the prediction of ternary liquid-liquid equilibria of acetic acid solutions 
including water and a non-associated component from binary parameters 
alone. 

SOLUTION MODEL 

We assume that in the liquid phase acetic acid (A) forms cyclic dimers by 
autoassociation, and acetic acid and an active non-associating component 
(B) solvate to yield 1: 1 chemical complexes. the equilibrium constants for 
self-association and solvation, K, and KAB, are defined by 

K =%I 
A a;,2 

for A,+A,=A, 

=K*,exp[ -%($-A)] 

forA,+B,=AB 

(1) 

(2) 

where @ is the segment fraction, h, the enthalpy of hydrogen bond for 
dimer formation, h,, the enthalpy of complex formation and superscript * 
denotes a reference temperature, here equal to 50°C. 

Binary systems 

Activity coeficient 
The UNIQUAC associated-solution model provides the following expres- 

sions of the activity coefficients for acetic acid (A) and the active 
non-associated component (B) 

In yA = In cp” + r, (“:I) (&-_:) - (;)%+($) +‘-$I 

(3) 
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where 2 is the lattice coordination number, here set as 10, and the segment 
fraction @r, the surface fraction or, the binary coefficient rJI related to the 
binary interaction parameter aJI are expressed by 

(6) 

rJ1 = exp( -iJrlT) (7) 

The monomer segment fractions of both components are simultaneously 
solved from eqns. (8) and (9). 

% = %, + QAz + @ABrA/rAB 

= @‘A, + 2L@L, + LB@A,@)BA 

% = %, + QABrB/rAB 

= %, + LB%,%rB 

where rAB = r,., + r, is assumed. 
The true molar volume of the mixture is given by 

(8) 

(9) 

_: = $ (1 + K*aJ&) + 2 + KAB@A,@B, 
A 

At pure acid state Vi and @i, are given by eqns. (11) and (12) 

1 1 - KA@;; -= 
v: rA 

@;, = [-I + (1 + 8KA)0’5]/4KA 

(10) 

(11) 

(12) 

Excess molar enthalpy 

The excess molar enthalpy of the acid mixture is expressed as the sum of 
the chemical and physical contributions. 

HE = HcEhem + HEhys 

~e,az,, 
- R c qIx, J d(W) 

I z eJrJ1 
J 

(13) 

The binary energy parameters are assumed to be linearly temperature 
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dependent. 

a JI = C,, + D,,( T - 273.15) (14) 

Ternary systems 

In a ternary mixture containing acid (A) and two active non-associating 
components (B and C), we assume additional complex formation between 
acid and component C. 

for A, + C, = AC 

=K&exp[ --%(+-&)I (15) 

The monomer segment fractions, @A,, QB, and @c,, are given by 
simultaneous solution of the following mass balance equations: 

@‘a = @A, + 2KA@P2A, + ~AJ3@A,@dA + KAC@A,@C,rA (16) 

@,, = @B, + KAB@A,@& (17) 

@‘c = @C!, + KAC@A,@C,k (18) 

The true molar volume V of the ternary mixture is expressed by 

The activity coefficient of component C is obtained by changing the 
subscript B in eqn. (4) to the subscript C. 

CALCULATED RESULTS 

Table 1 shows the molecular structural parameters of pure components, r 
and 4, which were estimated according to the method of Vera et al. [4]. 

Vapour-liquid equilibrium data were reduced using the thermodynamic 

TABLE 1 

Molecular structural parameters for pure components 

Component r 4 Component r 4 

Acetic acid 1.78 1.62 Methyl acetate 2.25 2.00 
Benzene 2.56 2.05 Toluene 3.10 2.48 
2-Butanone 2.60 2.28 Tetrachloromethane 2.71 2.37 
Cyclohexane 3.18 2.55 Water 0.73 1.19 
Ethyl acetate 2.79 2.43 
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TABLE 2 

Solvation parameters for binary mixtures 

System (A + B) K,, at 323.15 K -h,,/kJ mol-’ 

Acetic acid + water 60 23.4 
Acetic acid + 2-butanone 40 2T.O 
Acetic acid + ethyl acetate 40 20.5 
Acetic acid + methyl acetate 40 20.5 

relation 

where P is the total pressure, & the fugacity coefficient of component I, y, 
the vapour-phase mole fraction of component I, pS the pure component 
vapour pressure taken from the original vapour-liquid equilibrium data set, 
uk the pure-liquid molar volume estimated from the modified Rackett 
equation [5]. The fugacity coefficient $i is calculated from the chemical 
theory of vapour imperfections [6]. 

d1 =texp($) (21) 

where yi, is the vapour-phase monomer mole fraction of component I and 
BE the free contribution to the second virial coefficient [7]. The association 
parameters of acetic acid were taken from Tamura and Nagata [l]: 
K, = 14651.2 at 50°C and -h, = 44.5 kJ mol-‘. The solvation parameters 
are shown in Table 2. 

The computer program described by Prausnitz et al. [8] was used to seek 
an optimum set of the energy parameters by minimizing the object function. 

F = 5 (fi - 8” + (T - 0’ + (Xl, - a2 + (Yl, - 91,)’ 
i=l [ 4 & d 2 

UY 
1 (22) 

where a circumflex denotes the most probable calculated value correspond- 
ing to each measured variable and the standard deviations of the measured 
values are: for pressure, (T~ = 1 Torr; for temperature, (TT = 0.05 K; for 
liquid-phase mole fraction, a, = 0.001; for vapour-phase mole fraction, 
o,, = 0.003. Table 3 indicates the results of vapour-liquid equilibrium 
calculations and Figs. l-4 compare the calculated results with the 
experimental values for some typical examples. 

Table 4 lists the binary results of excess molar enthalpies. The 
coefficients, C,, and &, were obtained by minimizing the sum of the 
squares of the deviations between the experimental and calculated values. 
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0.0 0.2 0.4 0.6 0.8 1.0 

Mole fraction of acetic acid 

Fig. 1. Vapour-liquid equilibria for the acetic acid + water system. Calculated: -. 

Experimental: a, 20°C 191; A, 40°C [9]; 0, 60°C [ll]. 

0.0 0.2 0.4 0.6 0.8 1.0 

Mole fraction of acetic acid 

Fig. 2. Vapour-liquid equilibria for the acetic acid + water system. Calculated: -. 
Experimental: n , 69.7”C [Ill; A, 80°C (91; 0, 89.9”C [ll]. 



I I I I 

0.0 0.2 0.4 0.6 0.8 

4, 
4, 

6 

1.1 0 
Mole fraction of acetic acid 

Fig. 3. Vapour-liquid equilibria for the acetic acid + 2-butanone system. Calculated: -. 
Experimental: A, 68Sl”C [12]; 0, 78°C [12]. 

I I I I I I 
0.0 0.2 0.4 0.6 0.8 1.0 

Mole fraction of acetic acid 

Fig. 4. Vapour-liquid equilibria for the acetic acid + ethyl acetate system. Calculated: -. 
Experimental: A, 65.01-65.18”C [13]; 0, 72.94-73.08”C [13]. 
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I I I I 

0.0 0.2 0.4 0.6 0.8 1.0 

Mole fraction of acetIc acid 

Fig. 5. Excess molar enthalpies for the acetic acid + water system. Calculated: -. 
Experimental: A, 20°C [15]; 0, 40°C [15]. 

80 I 1 I I 

0.0 0.2 0.4 0.6 0.8 1.0 
Mole fraction of acetlc acid 

Fig. 6. Excess molar enthalpies for three acetic acid + organic compound systems. 
Calculated: -. Experimental: 0, acetic acid + 2-butanone at 20°C [16]; A acetic acid + ethyl 
acetate at 19-26°C [15]; W, acetic acid + methyl acetate at 35°C [15]. 
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Acetlc acid 

n 2 0 4 0. 6 0. a 
water mole fraction 

25 00 ‘C 

Cyclohexane 

Fig. 7. Ternary liquid-liquid equilibria for the acetic acid + water + cyclohexane system at 

25°C. Calculated: -. Experimental tie line [18]: l - - -0. 

Acetlc acid 

cl 2 0. 4 Cl. 6 0. 8 

Water mole fraction Benzene 
25. 00 ‘C 

Fig. 8. Ternary liquid-liquid equilibria for the acetic acid + water + benzene system at 
25°C. Calculated: -. Experimental tie line [18]: a-- - -0. 
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Acetlc acid 

Water 
0. 2 0. 4 0. 6 0. 8 

mole fraction Toluene 
25.00 'C 

Fig. 9. Ternary liquid-liquid equilibria for the acetic acid + water + toluene system at 25°C. 
Calculated: -. Experimental tie line [18]: l - - -0. 

Acetlc acid 

Wa er 

V 
0. 2 0. 4 0. 6 0. a 

mole fraction Tetrachloromet 
25.00 'C 

hane 

Fig. 10. Ternary liquid-liquid equilibria for the acetic acid + water + tetrachloromethane 
system at 25°C. Calculated: -. Experimental tie line [18]: l - - -0. 
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Acetlc acid 

Wa ter 
0. 2 0. 4 0. 6 0. 8 

mole fraction 2%Butan 
25. 00 ‘C 

Fig. 11. Ternary liquid-liquid equilibria of the acetic acid + water + 2-butanone system at 
25°C. Calculated: -. Experimental tie line [18]: l - - 4. 

Acetlc acid 

8 

Water 
0. 2 0. 4 0. 6 0. 8 

mole rract,on Ethyl acetate 
30. 00 ‘C 

Fig. 12. Ternary liquid-liquid equilibria for the acetic acid + water + ethyl acetate at 30°C. 
Calculated: -. Experimental tie line [18]: l - - -0. 
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The simplex method of Nelder and Mead [17] was used for this purpose. 
Figures 5 and 6 present the calculated and observed values of solutions of 
acetic acid with 2-butanone, ethyl acetate, methyl acetate and water. 

Ternary prediction of liquid-liquid equilibrium was performed for six 
systems: acetic acid + water + cyclohexane, acetic acid + water + benzene, 
acetic acid + water + toluene, acetic acid + water + tetrachloromethane, 
acetic acid + water + 2-butanone and acetic acid + water + ethyl acetate. 
Figures 7-12 show that agreement is good. 

We may conclude that the UNIQUAC associated-solution model is good in 
the correlation of vapour-liquid equilibrium and excess molar enthalpy 
data of binary acetic acid + active non-associating mixtures and could be 
used for the prediction of ternary liquid-liquid equilibrium data of 
solutions including acetic acid, water and one non-associated component. 
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